

Design of a
Universal Web Application Installer

Draft Version 1.0

By Brad Touesnard

CS4983 – Senior Report

Supervised by Prof. Andrew McAllister

Fredericton, New Brunswick

17 March 2005

UNIVERSITY OF NEW BRUNSWICK

FACULTY OF COMPUTER SCIENCE

© Brad Touesnard, 2005

 i

Executive Summary

Originally web applications were built by developers and usually installed by

developers or system administrators. Today however, there is an increasing number of

users installing web applications with limited skills and knowledge. These include users

wanting to publish a web log or setup a bulletin board system. There are currently

thousands of open-source web applications available, but no standardized, simple way for

them to be installed. Many of the more popular web applications come bundled with

their own install program but users are still obliged to unpack the files from an archive

and visit a web address to run the install program. This may sound simple to web

developers, but to the average user it does not. Additionally, the install program almost

always lacks the privileges to perform all of the operations to completely install the web

application. Often times, the install program asks the user to change permissions on

certain files and folders. Not only is this an irritating request, but for many users it is

beyond their knowledge. The user should not be expected to perform additional

installation tasks after running the installer. That is, the installer should perform all of the

operations necessary to fully install the web application.

The challenge is designing a web application installer that will feature all the

possible operations needed to successfully install any web application, from start to

finish.

 ii

Table of Contents

Executive Summary... i

Table of Contents.. ii

1.0 Objective... 1

2.0 Scope... 1

3.0 Definition of Terms... 2

4.0 The Current State of Web Application Installation .. 3

5.0 Universal Web Application Installer Design .. 4

5.1 Architecture... 4

5.2 Functional Requirements .. 6

5.2.1 The Interface ... 6

5.2.2 The Service ... 7

5.3 The Install Script... 8

5.4 User Interface Design ... 10

5.5 Implementation Language, Platform and Protocol ... 12

5.6 Security ... 13

6.0 Conclusion .. 15

7.0 Recommendations... 15

Bibliography ... 17

Appendix A: An XML-based Installer Script Example... 18

 1

1.0 Objective

The objective of this report is to present a design for a standardized and user-

friendly installer program that will enable easy installation of web applications by users

of all skill levels.

2.0 Scope

A web application (WA) is defined as a software application delivered to end-

users from a web server over a network such as the World Wide Web (WWW) or an

intranet. Common examples of WAs include webmail, message boards, and web logs

(blogs). [1], [2]

Java Applets and Java Scripts are sometimes referred to as WAs but do not fit the

definition of a WA described above. These are browser-based applications and do not

require a web server to be delivered. It is important to distinguish between these two

types of applications and note that this report will not be discussing browser-based

applications.

 2

3.0 Definition of Terms

Universal The term “Universal” in Universal Web Application Installer (UWI)

simply refers to the capacity of the installer program to install any WA

despite its implementation language.

Web
Application

An application delivered to end-users from a web server over a network

such as the World Wide Web or an intranet. [1]

Web Server A software program that runs as a service on a computer that is

responsible for serving web content.

Web Hosting A service that provides users with online systems for storing

information, images, video, or any content accessible via the web. [3]

Shared Web
Hosting

One of the most common types of web hosting. Distinguished by many

web sites sharing the same web server. The server is usually managed

by a root user and other users on the server have limited access to server

resources.

Web Hosting
Control Panel

A web application enabling web hosting clients to manage their email

addresses, FTP accounts, domain names, and other account features.

shall In the functional requirements section, “shall” implies that functionality

is required to be implemented.

should In the functional requirements section, “should” refers to the

functionality that is highly recommended for implementation but is not

required.

 3

4.0 The Current State of Web Application Installation

A common way to install a WA today is by following directions provided in the

WA’s documentation. Many WAs include an installer program that eases some of the

installation tasks. However, there is still a lot of manual work that must be done before

and after using an included installer.

First, the user must download the WA package, unpack it, and follow any

directions for setting up the installer. Often a configuration file must be modified or

created before the installer can begin its work.

After the installer has completed its work, there are often additional tasks that

must be performed to complete the setup process. Most often, the permissions on

directories must be changed so that the web server has access to write files to those

directories. A “thumbnails” directory is a typical example of a directory that would need

to be writeable so that images that have been resized can be saved.

One of the biggest problems with the installers included with WAs is that they do

not have access to perform all of the operations they need to perform to completely setup

the WA. An easy solution that may come to mind would be to simply give the WA

access to perform the needed operations. Unfortunately, giving the WA this level of

access would pose an unacceptable security risk and is not usually considered an option.

Recognizing this problem, web hosting control panel (CP) developers have

decided to integrate their own installers into their CPs because the CP software already

has access to perform all the needed operations to fully install a web application. cPanel

is currently the industry leading CP for the Linux operating system and offers sixteen

 4

“Pre-Installed” web applications. [4] In addition, Fantastico is a very popular extension

to cPanel offering over forty additional web applications to install. [5]

Although cPanel and Fantastico are valued by their users and web hosting

professionals, they are both proprietary software packages and only allow installation of

the web applications they have chosen. Therefore, if there is a web application not

currently available from the cPanel or Fantastico installers, the user has no choice but to

manually install the web application.

The need for an open-standard web application installer enabling the complete

installation of any web application is clear. An open-standard web application installer

would benefit web application developers, web hosting companies, and most importantly

the end-user.

5.0 Universal Web Application Installer Design

5.1 Architecture

In order to begin understanding the details of the UWI system, it is important to

first establish a picture of the overall structure of the system, all its major components,

and how they work together (Figure 1).

 5

End Users

Server 1 running
UWI Service

Server 2 running
UWI Service

Server 3 running
UWI Service

Web Server
Firewall

Figure 1: Network diagram of the UWI system in a multi-server environment

The UWI system is composed of two main components: the UWI interface

operated by end-users and the UWI service running on the user’s server. In a single-

server environment, the UWI interface and service would reside on the same server.

Operation of the UWI system is based largely on input from end-users. It is the

end-user who dictates via the web-based interface the operations performed by the

service running on their server. The UWI service runs on all servers in which the user

has access to install a WA. Scenario 1 better illustrates the communication between the

UWI interface and the UWI service. There are some details such as user authentication

(security) that have been left out of Scenario 1 to keep it simple.

Scenario 1: Installing Forum Software

John has a web hosting account on Server A and wishes to install phpBB,

a popular forum software WA. To accomplish this, John points his web

browser to the address of the UWI interface, chooses phpBB from the list

of WAs to install, and then submits his installation request. The request is

 6

received by the UWI service running on Server A which proceeds to

install phpBB as requested. After installation has completed, the UWI

service sends a message back to the UWI interface informing John that

installation has succeeded or failed.

5.2 Functional Requirements

5.2.1 The Interface

The UWI interface shall enable the user to login using a unique username and

password. Once logged-in, the interface shall enable the user to choose a WA package to

install that they have saved to either their web hosting account or local hard drive. The

interface should allow the user to browse the list of files and directories in their account

and select the WA package. The interface should also enable the user to choose from a

list of available WAs to install. The WA list is an optional feature that can be setup by an

administrator of the UWI system. To setup this list, the administrator must create a

repository of WAs. The repository is simply a directory containing WA packages and a

document (XML is recommended) describing the packages within this directory. When a

user selects a WA from the list, the interface shall display a button to begin a new install

and list any previous installations including the date and location of installation.

When a new install is initiated by the user, the interface shall send a request to the

UWI service to begin installation of the selected WA. Next, the interface shall display

input forms and instructions generated from information in the response from the UWI

service. These input forms will collect information from the user essential to completing

installation of this particular WA. Once this information has been collected from the

 7

user, the interface will ask the user where in their account to install the WA. The

interface should give a recommended location by default but also shall enable the user to

browse the list of directories in their account and select a directory in which to install the

WA. The interface will also enable the user to create a new directory if they wish to do

so. If a the WA requires a database, the interface shall ask the user to input a database

server address, a username and password, a database name, and an optional prefix for

data table names. The interface should also enable the user to test their connection to the

database.

Now that all of the information has been collected to execute complete

installation, the interface shall display a summary of all of the information collected from

the user and enable the user to return to modify information previously entered or execute

installation. When the user executes installation, the interface must send a request to the

UWI service to install the WA containing all of the information collected from the user.

Next, the interface shall display the response received from the UWI service detailing the

success or failure of installation.

5.2.2 The Service

The UWI service shall authenticate an incoming connection by checking the

incoming username against the usernames allowed to access the server. If a matching

username is found, the UWI service shall check the incoming password against the

password associated with the matching username.

When a new install is requested from the interface, the UWI service shall unpack

the requested WA package to a temporary location, read an install script included with

 8

the package, and return instructions to the interface dictating information to display and

collect from the user. Further information about the install script is presented in Section

5.3.

When a request to execute installation is received from the interface, the service

shall use information received from the interface and instructions read from the install

script to perform operations on the unpacked WA files. Operations include modifying

file and directory permissions, adding and removing files and directories, modifying and

overwriting files, and copying and moving files and directories within the unpacked

WA directory (see Section 5.6).

Once all operations have been performed, the service shall move files to the

install location specified by the interface. Next, the service shall return a message to the

interface describing the installation success or detailing any failures that occurred during

the installation procedure.

5.3 The Install Script

The purpose of the install script is to describe the WA and the installation

processes that must be executed for a complete installation. An XML-based install script

would enable easier reading and writing of the installation procedures for developers and

is highly recommended as the document format. In addition to easy reading and writing,

an XML-based install script enables embedding of XHTML allowing the script’s author

to write the installer controls in valid XHTML as they would write the controls for any

web page. The following is a brief specification of the UWI XML installer script.

 9

Every UWI installer script must begin with the <uwi> element with a mandatory

version attribute specifying the version of UWI installer script to which the document

conforms. The current specification is version 0.1.

The sub-element of <uwi> is a single <app> element which contains information

about the application and how to install it.

Sub-elements of <app>:

Element Description

title The title of the web application

author The person, group or organization who wrote the web application

description A phrase or sentence describing the web application

link The URL of the web application’s official web site

version The version of the web application

configuration Contains elements related to configuration of the installation

operations Contains elements describing installation operations to be executed

Sub-elements of <configuration>:

Element Description

database Contains elements concerning database configuration

steps Contains <step> elements for each installation step specific to this web
application

Sub-elements of <operations>:

Element Description

chmod Change the specified file or directory permission. Has attribute mode that
accepts numeric Unix file permission modes. e.g. 0777

move Move the specified file or directory (including its contents).

remove Remove the specified file or directory (including its contents).

copy Copy the specified file or directory (including its contents).

mkdir Create a new directory.

mkfile Create a new file.

sql Execute the specified query.

 10

Any {VAR_VARNAME} strings found in the contents of <operations> sub-elements are

replaced by the value of VARNAME which was defined by the user during

configuration.

Sub-elements of <database>:

Element Description

required Specifies whether a database selection is required

dbms Contains elements describing a database system

Sub-elements of <step>:

Element Description

any element of
XHTML 1.0

Any valid XHTML 1.0 elements can be inserted here and will be used to
display the given step input forms

Sub-elements of <dbms>:

Element Description

title A description of the database system

script A path to the database script to execute for installation

Sub-elements of <mkfile>:

Element Description

name The name and path of the file to be created

data The contents of the file

The RSS 2.0 Specification was used as a guide for this brief specification of the

UWI Installer Script. [6] An example of an XML-based install script is presented in

Appendix A.

5.4 User Interface Design

One of the keys to the success of this project is a professional user interface

design with which the user is familiar. As the Windows operating system is currently

dominating the operating system market, the majority of end-users are familiar with

 11

Windows software installers. Common Windows installers include Microsoft’s

Scriptable Installer, Wise, InstallShield, and the open-source NullSoft Scriptable Install

System (NSIS); all of which have basically the same interface design. [7]

Figure 2: NullSoft Scriptable Install System (left) and InstallShield (right)

The UWI user interface design should employ the same layout design as these

popular Windows installers and should be similar in overall appearance. A title bar

should occupy the entire top portion of the screen and should display the title and a short

description of the current step in the install process. Detailed instructions about the

current step should be placed directly under the title bar followed by the controls for the

current step. Controls to move to the next step and back to the previous step should be

located at the bottom of the screen. A button to cancel the installation should be located

in the bottom right of the screen. The basic layout of the UWI interface is shown in

Figure 3.

 12

Figure 3: Basic Layout Design for the UWI Interface

5.5 Implementation Language, Platform and Protocol

PHP is a web development language that presents many advantages over other

languages for use in this project including support for most major operating systems and

most major relational database systems. Since PHP supports multiple operating systems

and database systems, the UWI system (both the interface and service) implemented in

PHP can also offer this support. This is particularly important because the more server

configurations that are supported by the UWI system, the more WAs can make use of the

installer and the better chance that it will be available to end-users.

The protocol used by the UWI system should be one which is simple to

understand and widely supported in the industry. XML-RPC is a mature protocol which

enables execution of procedures on another server by sending a request as an XML

document. There are currently several libraries available in PHP that implement the

XML-RPC protocol which could be used for this project. The XML-RPC library from

usefulinc.com has been used in the past and is highly recommended. [8]

Title
Short Description

Next > < Back Cancel

Detailed Instructions

Step Specific Controls

 13

5.6 Security

There are several security vulnerabilities that are common in WA currently

running on the web today including SQL injection and cross-site scripting.

Vulnerabilities that are specific to WAs developed in PHP include register_globals

insecurities and file includes. [9], [2] The details of these vulnerabilities and how to

prevent them are outside the scope of this report but it is important for developers to be

aware of these issues when developing the UWI system. Recommended readings include

the DevShed article “PHP Security Mistakes” [10], the ONLamp article “PHP Security”

[11] and the “Security” chapter in “Profession PHP4” [9].

As mentioned in Section 5.1, the UWI system can be setup in a multi-server

environment as well as a single-server environment. The single-server environment

presents significantly stronger security as all communication between the UWI interface

and the UWI service is done on the server and does not go out over the network. In a

multi-server environment, communication between the interface and service should be

encrypted using SSL. The open-source cURL and OpenSSL packages enable encryption

of communication with PHP.

To accept connections from the UWI interface, the UWI service must open a port

on the server on which it is running. Opening a port on a publicly accessible server is an

invitation for attacks. To prevent the possibility of an attack, security can be

implemented at the network level by installing a firewall between the server running the

UWI service and the public internet. The firewall will only allow traffic on specified

ports to reach the server running the UWI service. Therefore, by disallowing traffic for

the port on which the UWI service is listening, we can minimize this vulnerability.

 14

To further secure the UWI service, we can accept incoming connections and

verify their IP address against a list of allowed IP addresses. Only incoming connections

with allowed IP addresses will be accepted, the rest will be disconnected. It is important

to note that there are two forms of IP addresses: the common format is four sets of three

digit numbers separated by periods (e.g. 207.142.131.236) and the less common is a

straight-number format (e.g. 3482223596). Knowing that these formats are equally valid

when writing an IP address filter is essential to security. A known hacking technique is

to use the straight-number format to bypass filters checking only for the period-separated

format.

Since the UWI service will be manipulating files on the server on which it is

running based on instructions from the end-user and the install script, it is crucial to the

security of the server that operations are limited to files within the temporary directory of

the unpacked WA. If operations are not limited to the WA files, an install script could be

tailored to carry out harmful acts on any of the user’s files. For example, an install script

could be written to delete files in the user’s directory.

To ensure that operations are only executed on the WA files, the path to the

temporary WA directory should be appended to every file path. For example, if the

temporary WA directory was /home/brad/temp/phpBB2/ and an operation is to be carried

out on the file include/config.php, then the operation would be executed on the path

/home/brad/temp/phpBB2/include/config.php. It is also important to recognize that file

and directory paths can be manipulated by using relative paths and symbolic links (on

Unix based systems). For example, a relative path like ../../config.php could be given

which would translate to the path /home/brad/config.php, outside the temporary WA

 15

directory. To prevent such manipulation, the PHP function realpath() can be used to

translate the path, then the translated path can be checked if it is within the temporary

WA directory.

6.0 Conclusion

In order to gain immediate and widespread acceptance, the designed UWI system

will behave and appear much like the pseudo-standard design presented by Windows-

based installers. The interface design will present similar features because these features

are already accepted by users of Windows installers. The implementation language will

offer support for most operating systems and most database systems. The UWI system

will be implemented with security as a high priority to ensure that system administrators

will not hesitate to install the UWI system and offer it to their end-users due to security

concerns.

It is clear that a standard WA installer is much needed by end-users to facilitate

WA setup and eliminate the need for manual installation. The UWI design outlined in

this report has addresses issues with current installation methods and offered a

comprehensive solution to this problem.

7.0 Recommendations

It is highly recommended that this project be developed and released under the

General Public License (GPL) or another suitable open-source license. Releasing the

UWI system as open-source will enable quick adoption as an unofficial industry standard

WA installer and will increase the security of the system. I recommend “The Cathedral

 16

and the Bazaar” by Eric S. Raymond [12] for more details on the advantages of open-

source software.

 The described UWI design currently does not allow for upgrading an installed

WA. Upgrading is an important part of the application maintenance as security updates

are often included as upgrades. Upgrading often presents a similar set of operations as

installing and including the upgrading feature into the UWI design would require little

effort. Although, the biggest problem with upgrading is that any modifications that have

been made to the WA files to be overwritten will be lost. A sophisticated merging

feature like the one included with most source control systems (Microsoft Visual Source

Safe, CVS, Subversion, etc.) would enable the end-user to update the WA files without

losing their modifications. In addition to upgrading, the ability to uninstall an installed

WA is also a feature that would be useful.

 In order to reach as many end-users as possible, the UWI system should employ

other features common to installers such as the NullSoft Scriptable Install System. For

example, the UWI system could be developed with multiple language support enabling

additional languages to be added as needed. [13]

 17

Bibliography

1. Unknown, “Web Application,” Wikipedia,

http://en.wikipedia.org/wiki/Web_application [accessed 2005-03-10]

2. Unknown, “Building and Deploying Secure Web Applications,” London: Info-Tech

Research Group, 2002.

3. Unknown, “Web Hosting,” Wikipedia, http://en.wikipedia.org/wiki/Web_hosting

[accessed 2005-03-10]

4. Unknown, “cPanel Features,” cPanel.com, http://www.cpanel.net/features-

cpanel.html [accessed 2005-03-12]

5. Unknown, “Fantastico De Luxe,” netenberg.com,

http://www.netenberg.com/fantastico.php [accessed 2005-03-12]

6. Rogers Cadenhead, Adam Curry, Steve Zellers, “RSS 2.0 Specification,” RSS

Advisory Board, http://blogs.law.harvard.edu/tech/rss [accessed 2005-03-15]

7. Unknown, “Installer,” Wikipedia, http://en.wikipedia.org/wiki/Installer [accessed

2005-03-13]

8. Unknown, “An XML-RPC client and server for PHP,” usefulinc.com: XML-RPC,

http://xmlrpc.usefulinc.com/php.html [accessed 2005-03-16]

9. Luis Argerich et al, “Professional PHP4,” Apress, 2003.

10. Dave Clark, “PHP Security Mistakes,” DevShed,

http://www.devshed.com/c/a/PHP/PHP-Security-Mistakes/ [accessed 2005-03-15]

11. John Coggeshall, “PHP Security,” ONLamp.com,

http://www.onlamp.com/pub/a/php/2003/07/31/php_foundations.html [accessed
2005-03-16]

12. Eric S. Raymond, “The Cathedral and the Bazaar,”

http://catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ [accessed 2005-03-
16]

13. Joost Verberg, “Features,” NullSoft Scriptable Install System,

http://nsis.sourceforge.net/features/ [accessed 2005-03-13]

 18

Appendix A: An XML-based Installer Script Example

<uwi version=”0.1”>
 <app>
 <title>phpBB2</title>
 <author>phpBB Development Group</author>
 <description>
 A popular open-sourced bulletin board web app lication.
 </description>
 <link>http://www.phpbb.com</link>
 <version>1.1</version>
 <configuration>
 <database>
 <required>true</required>
 <dbms id=”1”>
 <title>MySQL 3.2.x</title>
 <script>db/schemas/mysql.sql</script>
 </dbms>
 <dbms id=”2”>
 <title>PostgreSQL 7.x</title>
 <script>db/schemas/postgre.sql</script>
 </dbms>
 <dbms id=”3”>
 <title>Microsoft SQL Server 7/2000</title >
 <script>db/schemas/mssql.sql</script>
 </dbms>
 <dbms id=”4”>
 <title>Microsoft Access (via ODBC)</title >
 <script>db/schemas/msaccess.sql</script>
 </dbms>
 </database>
 <steps>
 <step>
 <fieldset>
 <legend>phpBB Configuration</legend>
 <label for=”sname”>Site Name</label>
 <input type=”textbox” name=”sname” size =”20” id=”sname” />
 </fieldset>
 </step>
 </steps>
 </configuration>
 <operations>
 <sql>
 UPDATE {VAR_DBPREFIX}config SET config_valu e = ‘{VAR_SNAME}’
 WHERE config_name = ‘sitename’
 </sql>
 <remove>install.php</remove>
 <remove>upgrade.php</remove>
 <remove>db/schemas</remove>
 <chmod mode=”0777”>images/avatars</chmod>
 </operations>
 </app>
</uwi>

